
The Dijkstra Algorithm is a good way to find the shortest path but its drawback is that it needs to expand
from the starting node in all directions, regardless of where the goal node is located.
dijstrak_algorithm.mp4
In the previous video we could see how expensive is the Dijkstra Algorithm, because it needs to calculate
all the possible paths and then find the shortest one. Here is where A* is introduced, it can optimize the
process of searching.

Informed Search Algorithms

Informed Search Algorithms utilize the information about the goal location to guide the search towards
the target. We know if we want to drive to a location that is east of us, we would search a road that also
goes to the east because road going to the west will most likely take us further away from our target.

In this image we could say that node I and O located at the east are the best because they are more near
to the goal. But M is the worst, these processes are named Informed Search Algorithms.

Heuristics
We can avoid unnecessary exploration, deciding which node to explore next. To provide an accurate
answer to this question, we need to calculate all the possible paths and theirs travel distance, then we
choose the one with the shortest path. But we were doing that before and it is not efficient. You can't
say what is the shortest path in the following image. Because we don't know what is the shortest path.

A heuristic method help us to solve the problem but with approximations, but its very quickly and help
us to solve the main problem.

Euclidean Distance
The most common heuristic method for approximant the travel distance is the Euclidean Distance.

In the image below, we can see that the Euclidean Distance crosses the obstacles. All we need to guide
our search is a value that indicate us where to explore next.

A* Search Algorithm
Friday, January 27, 2023 11:59 PM

 Path Planning Page 1

our search is a value that indicate us where to explore next.
𝑑 = ඥ(𝑥ଵ − 𝑥ଶ)ଶ + (𝑦ଵ − 𝑦ଶ)ଶ

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Manhattan distance
It's the distance between two points measured along the axes at right angles. It only allows
left/right and up/down movements.

The Manhattan distance is defined as:
𝑑 = |𝑥ଵ − 𝑥ଶ| + |𝑦ଵ − 𝑦ଶ|

Notes
Both are two of the most widely used heuristics used for approximating travel distances between
nodes. There are however , many other well known heuristics methods. You could use a spherical
method to estimate between two distant points on Earth's surface. An admissible heuristic is
always lower or equal to the real distance.

Greedy Best-First Search
This algorithm shares most of its code with Dijkstra's shortest path algorithm, except that it
expands its way by selecting the node closest to the goal. Due to this change it runs faster than
Dijkstra, it will tend to focus on nodes closest to the goal.

greedy_best_first_search.gif

This algorithm is faster than Dijkstra's but it's path is not the most optimal. To use this algorithm
we need to replace the cost of Dijkstra by the heuristic cost the measures the distance from the goal
towards the current node's neighbors.

gbfs_expected_result.gif

Greedy BFS Behavior

Sometimes the path found by this algorithm is not the best one, the problem with this algorithm is
that it always expands to the nodes closest to the goal. This behavior can mislead the algorithm to
expand that nodes that look promising.

gfbs_concave.gif

We can see in the above image that this algorithm doesn't found the most optimal path, instead it
could find the worst path when the obstacles are concave or large.
As we can see, every search method has its advantages and disadvantages. Keeping track of the
distance to the starting point, like Dijkstra does, is slower, but it produces the shortest path; using
an heuristic function like Greedy BFS is faster, but we can produce long paths that are not optimal.
Wouldn’t it be nice to combine the best of both methods? How lucky that this is exactly what A*
does!

A*'s Special Secret
This algorithm combine the distance from the start node to the current node, similar to Dijkstra, and the
estimated distance from the current node to the goal node like GBFS does. These two cost are combined
to create a new cost known as the total cost of the node, which will denote as 𝑓௖௢௦௧

𝑓௖௢௦௧ = 𝑔௖௢௦௧ + ℎ௖௢௦௧

Where:
𝑔௖௢௦௧: Dijkstra's cost that estimates the distance from the start node to the current node
ℎ௖௢௦௧: Represents the euristhic distance from a node to the goal location
Whenever A* expands its search to a new node, each candidate is evaluated according to its total cost
The node with the smallest 𝑓௖௢௦௧ is select as the next node to be explored.

astar_empty.gif

Concave obstacle example:

astar_concave.gif

Result:

astar_expected_result.gif

 Path Planning Page 2

astar_expected_result.gif

A is a complete algorithm , which is good because it means that it will always find that solution if a
solution exists. But it has a cost. To find a complete and optimal solution, a so called deterministic
algorithm is required A* is such deterministic path planning algorithm. Which means that it always will
produce the same path and follows the same computation steps. Unfortunately deterministic algorithms
don't scale well with the map size.

 Path Planning Page 3

